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Multiple scattering theory of electron transport in 
disordered metals in the muffin-tin potential model: 
111. Numerical results 

R FrCsard?, H Beck? and M Itoh$ 
t Institut de Physique, UniversitC de Neuchiitel, CH-2000 Neuchiitel, Switzerland 
$ Department of Physics, Shimane University, Matsue 690, Japan 

Received 14 June 1990 

Abstract. A model calculation is attempted for the electrical resistivity and the electronic 
density of states of liquid and amorphous metals using the muffin-tin EMA formalism devel- 
oped by the present authors. A single s-phase shift model is adopted here with different 
scattering strengths. It is found that the short- and the medium-range order in the atomic 
structure causes a deep minimum in the electronic density of states and, furthermore, a very 
sharp rise of the resistivity when the Fermi energy approaches the minimum. It causes in 
turn a strong temperature dependence of resistivity for strong scattering cases through 
the temperature dependence of the Fermi-Dirac distribution function. The temperature 
dependence also comes from the structure factor, and both effects support the Mooij 
correlation between the resistivity and the temperature coefficient of resistivity. 

1. Introduction 

In the preceding papers (Itoh er a1 1989,1990; to be referred to as I and I1 respectively) 
we have developed a formal theory of electron transport of disordered metals by 
extending the work by Roth and Singh (1982). The theory is based upon the effective 
medium approximation (EMA) ,  introduced originally by Roth (1974), and includes both 
the multiple scattering processes and the structural effect in a self-consistent way. It is 
emphasized in particular that it is capable of dealing with the strong scattering materials 
including the d- or f-electrons and also that both the electronic density of states and 
the transport are treated on the same footing. Its application is therefore extremely 
interesting in connection with the recent experimental activities on high resistivity 
metallic glasses (see, for a review, Howson and Gallagher 1988) and on many simple 
metallic glasses in which a strong Fermi surface-Brillouin zone interaction is suggested 
(Haussler and Baumann 1983, Mizutani 1983). In particular the latter systems clearly 
show the interplay between the short-range order and the various anomalies in the 
transport properties, which is most likely related to the observed minimum in the density 
of states, thus providing physically very attractive problems. In the present paper we 
attempt an application of the theory to a system of hard sphere scatterers with s-phase 
shifts, in order to elucidate the interplay mentioned above. We calculate the density of 
states and the resistivity for a fixed atomic configuration. Therefore the effect of the 
electronic states on the structure (Haussler 1983) is neglected and we concentrate only 
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on the study of the scattering mechanism. Although the model is quite suitable for simple 
metals, we vary the phase shift up to the strong scattering case in order to get an insight 
into the non-simple materials. We also vary the packing fraction to investigate the 
structure effect. The temperature dependence of the resistivity is studied by taking into 
account the finite width of (-df/dE), the derivative of the Fermi-Dirac distribution 
function, the effect of which may be quite substantial as reported recently (Zhao and 
Ching 1989). Since the temperature dependence of the resistivity is related to many 
other factors (in particular the temperature dependence of the structure, which causes 
in turn a change in the Fermi level), it is not quite possible to give a definite conclusion 
at this stage. Yet we will see that our calculation is consistent with the Mooij correlation. 
Moreover it shows that there are many aspects of the static effects we should study 
before we discuss the dynamical effects on the temperature dependence of resistivity. 

In the next section we start with a brief summary of the formalism for a single- 
component system with s-scattering. The equations become relatively simple in this 
case. For the mathematical details to include the higher angular momentum phase shifts, 
paper I1 should be consulted. In section three we present the result of numerical 
calculations for the density of states, resistivity, and the spectral functions. A deep 
minimum in the density of states is observed for strong scattering cases. It is seen to be 
related to the wiggling curve of the dispersion relation with quasi-particle damping 
width, which shows the strong Fermi surface-Brillouin zone interaction discussed by 
Haussler and Baumann (1983). The resistivity has very high values there, far exceeding 
the Ziman contribution. The importance of the vertex corrections is emphasized and 
the temperature dependence of resistivity is also discussed. The final section is devoted 
to further discussions. 

Some of the results have been summarized in the proceedings of LAM 7 (FrCsard et 
a1 1990) and more details are given in a doctoral thesis (FrCsard 1989). 

2. Summary of the formalism for s-scattering 

As emphasized in the introduction, we are able to calculate both the electronic density 
of states and the transport properties on equal footings. For this we need to solve 
two levels of equations. The first level is a set of coupled equations for one-electron 
properties: 

In the above equations t ( p , p ' )  is the matrix element for the single scattering centre, 
whereas Q k ( p 7  p ' )  is the quantity representing the total T-matrix of the system, with k 
representing the ionic momentum, and T d ( p ,  p ' )  is its diagonal part (in this paper we 
used nTd(zc7 K) instead of Qd used in paper I). The arguments in the parenthesis are for 
the electron momentum variable but only the on-shell components appear in the above 
equations; namely p = p '  = K, where K is defined by K = .\/E. The quantities B ,  B are 
defined as follows: 
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The function a o ( k ,  k ’ )  is defined as the 1 = 0 component of the following expansion 

h(lk - k ’ l )  = 4nX,Y,(k)a,(k, k’)Y,(k’) (1.6) 

with h = g - 1 being the total correlation function. The remaining quantity, G ( p , p ‘ ) ,  
is the normalized propagator defined diagrammatically in I and is an important building 
block of the theory. The electron self energy Z is obtained through the following relation: 

x ( k )  = [ Q k ( k ,  k)/( l  + Bk(K)Qk(k ,  k))1 (1.7) 

Note that the self energy is related not only to the solution of the on-shell equations but 
also to the off-shell component of the T-matrix. This is because the self energy includes 
detailed information on the electronic states, although the information about the dis- 
tribution of the eigenstates, i.e. the density of states, is fully included in the on-shell 
component (Lloyd 1967). The equations (1.1)-(1.3) only determine the on-shell com- 
ponents of the relevant quantities. The off-shell components are obtained easily from 
the following relations: 

Finally the density of states and the spectral functions are obtained from the con- 
figurationally averaged Green function 

(G(k ) )  = l/(Go(k) - X ( k ) )  = Go(k) + Go(k)Qk(k ,  k)Go(k) .  (1.10) 

Some caution is required in solving the equations because it contains free electron 
divergences in B ,  B.  We are able to rewrite the whole equations in a divergence-free 
form; the details are given in the appendix. Solving our integral equations is a highly 
non-linear problem. As for the calculation of the resistivity, the problem is basically 
linear after having solved the one-electron problem. In the case of the EMA this con- 
tribution is conveniently integrated into the formalism and we obtain the following 
expression for the DC conductivity: 

a = 1 d E  ( - $1 a(E)  ( 1.1 la )  

f ( E )  being the Fermi function and the differential conductivity a(E)  being determined 
by (suppressing, for simplicity, the energy argument E ) :  

d k  
h eh k 3 d k  

CJ = - 3 n  (-) m 1% ( G J ( k ) G ; ( k ) X + + ( k )  - ;Re ( G + ( k ) ’ ~  

+ (fi)2 1 k4 dkA(k)2  
3 n  m 

(1. l l b )  
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where A ( k ,  E )  = - Im G + ( k ,  E )  is the spectral function and G;, are the free elec- 
tron propagators. The X+- term represents the vertex corrections for the electron-hole 
pair given by 

2 
x+-(k) = Q k ( ~ ,  K) 1 X : - ( k )  + 2 Re (v Q k ( ~ ,  ~ ) X l - ( k ,  k ) )  + X : - ( k )  

(1.12) 
where 

(1.13) 

(1.14) 

In the above equations z is the on-shell component t ( K ,  K) of the single scatterer t-matrix 
and a l ( k ,  k ’ )  is the I = 1 component appearing in the expansion (1.6). The vertex 
corrections to the particle-particle (or hole-hole) pair are already included in (1.11). 
This term, together with the large wavenumber contributions to the particle-hole vertex 
corrections, forms the effective mass and the scattering rate renormalizations (Itoh and 
Watabe 1984a). 

3. Results 

We have used the spherical square-well potential for our muffin-tin potential. The radius 
and the depth of the potential are denoted by a and V ,  respectively, for which we have 
chosen Voa2 = 0.9, V,a2 = 1.9 and Voa2 = 2.4. Our unit is h = 2m = e’ = 1. For these 
parameters bound states are not yet formed. The expressions for the t-matrix elements 
for this potential are given by Kujawski and Lambert (1973) and by Fuda and Whiting 
(1973). The hard sphere system is used to describe the atomic structure, and we use the 
analytic solution of the Percus-Yevic equation for the structure factor. We have studied 
the three cases of the packing fraction, rj = 0.42, 0.45 and 0.47. The atomic density is 
fixed to ben  = fi, which means that the nearest-neighbour distance is set equal to unity 
for the FCC structure. We also fix the ratio of the hard sphere radius to the muffin-tin 
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Figure 1. Hard sphere structure factor used in our 
calculations with the following packing fractions. 

0 0 0 2 0 4 0 6 08 1 0  x l o + o '  r j  = 0 42(brokencurve).v = 0,45(dottedcurve), 
r j  = 0 47 (full curve) 

0 0  

a a  

voa2 = 2 4 

v& 1 9  

v$= 0 9 v 
I C  iKa)Z  

Lo 
W 
c 
c 
m 

L L  
0 

>- 

m 
z 
0 

a 

t 

Y 

1.0 ( K a ?  

Figure 2. Electronic density of states (in arbitrary units) in the vicinity of the minimum for 
two different packing fractions ( a ) :  v = 0.45, ( b ) :  rj = 0.47 and three potential strengths 
(indicated on the figures). 

radius to be 1.25, so that the muffin-tin spheres do not overlap. The structure factors 
used for our calculations are plotted in figure 1 

3.1. Density of states: structure induced minimum 

First we show the results of the DOS calculation. In figure 2 the DOS curves are plotted 
for various scattering strengths at fixed atomic structure. The minimum of the DOS is 
already seen in the case of Voa2 = 0.9, becoming more and more pronounced for 
stronger scattering. The intermediate value, Voa2 = 1.9, already corresponds to a strong 
scattering metal in terms of the resistivityvalue, if the Fermi level is close to the minimum 
of the DOS (see below). For Voa2 = 2.4 the minimum is very deep. It is not clear whether 
a real band gap is created by s-phase shift alone before we start to have the bound states 
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Figure 3. Electronic spectral functions, plotted (in arbitrary units) as a function of wave- 
number ( k a )  for various values of KU. The packing fraction is = 0.47 and the potential 
strengths are ( a )  V,,a2 = 1.9 and ( b )  V,,a‘ = 2.4. 

(see below for a cluster calculation for s- and p-phase shifts). However it is concluded 
from the behaviour of the spectral functions that the minimum is produced by the ‘Bragg 
scattering’ at the zone-boundary. In figures 3 and 4 we have plotted the spectral functions 
and the dispersion relation respectively for V,a2 = 1.9, the latter of which has been 
derived from the peak positions of the former. As is seen from figure 3 the peaks of the 
spectral functions are very sharp for low energies. The width of the peak is shown by the 
hatches in figure 4. When the wave number k approaches k, /2 ,  where k ,  is the peak 
position of the structure factor, the peak becomes broadened, and it becomes sharp 
again for higher k values. The effective dispersion relation is seen to have a wiggling 
form around k = k, /2 .  We see therefore that the spectral function has a double-peak 
structure when the plot is made against the energy for a fixed k ,  although a finite 
magnitude is observed between the two peaks. All these features are, of course, due to 
the reminiscence of the gap formation mechanism by Bragg reflection in the presence 
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Figure4. The effective dispersion relation for rj = 0.47 and the potential strengths (a )  Vl,a2 = 
1.9 and ( b )  Vlra? = 2.4. The broken curve locates the free electron energy E = fi2k2/2m and 
the hatched area indicates the width of the spectral function. 
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Figure 5. Electronic self-energy (a ) :  real part, (b ) :  imaginary part for various energies E.  a:  
0.739, b: 0.927, c: 1.06, d: 1.21, e: 1.37, f :  1.53, g: 1.71, h: 1.89, i: 2.39. 

of the short range order. On the other hand, however, the figure also shows that the 
same mechanism can enhance the total scattering effect when the potential is not very 
weak and when the system is not in a perfect order, as represented by the broad width 
near the ‘zone boundary’. 

It may be interesting to see how the shape of the spectral function (being the 
imaginary part of the Green function (1.10)) is formed by the self-energy C. Figure 5 
shows the real and imaginary part of Z as a function of wave number for various energies. 
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Figure6. Density of states of a 13 atom Fcccluster 
taking into account s- and p-phase shifts (V,,a2 = 
5). The broken curve gives the free electron result 
for comparison, the dotted and chain curves are 
for s- and p-scattering alone respectively (the 
other phase shift being put equal to zero) and the 
final curve shows the density of states for s- and p- 
scattering. 

There is a 'jump' between the energy values E = 1.37 and E = 1.53, which is responsible 
for the two-peak structure of the spectral function mentioned above. 

For the sake of comparison we also show in figure 6 the density of states curves 
calculated for 13 s- and p-scatterers arranged on an FCC structure (Voa2 = 5). Here it is 
the p-scattering which yields a strong structure induced minimum (see the chain curve) 
which, when combined with s-scattering, leads to a real gap in the spectrum (full curve). 
(More details about cluster calculations can be found in Fresard and Beck (1986) and 
Beck et a1 (1987)). 

3.2. Residual resistivity 

In figure 7 plots are made for the conductivity function, a ( E ) ,  for Voa2 = 1.9 and 2.4 for 
a fixed configuration of q = 0.47. These plots show the conductivity of degenerate 
electrons and are considered to be the inverse of the residual resistivity in the case of 
amorphous metals. Three contributions are shown separately in the figure, cor- 
responding to the three terms in (1 . l lb) .  The total conductivity is shown by the full 
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curves. The spectral contributions, which are given by neglecting the difference between 
(GG) and (G)(G), are shown by the dotted lines. There are also two types of vertex 
corrections, namely the corrections for the particle-hole pair and for the particle- 
particle pair, represented by the broken lines and by the chain lines respectively. The 
results include the off-shell contributions in the complex form, the major part of which 
being absorbed in the ‘conventional term’, i.e. in the contribution from X T -  (see paper 
I). The contributions from X i -  and Xi- are invisibly small in the figures. 

A very sharp drop of the conductivity is observed near the DOS minimum in both 
figures. This clearly shows that the same scattering mechanism governs both the DOS and 
the conductivity function. It is emphasized that the vertex corrections are as important as 
the spectral contributions. The correction from the particle-hole pair has large negative 
values except at the very bottom of the minimum (in the low energy region it is seen to 
change its sign). The correction from the particle-particle pair is also seen to be very 
substantial when the potential is strong. It is notable that it changes its sign when 
we pass through the minimum. This is because it is related to the dispersion effect, 
corresponding to the effective-mass correction (see Itoh and Watabe 1984, Itoh 1985), 
which must have opposite signs on both sides of the ‘zone boundary’. Our calculation 
shows that the particle-particle contributions can by no means be neglected, although 
they are ignored in most theoretical calculations, including the recent treatments of 
the quantum interference effect. All three contributions are strongly affected by the 
damping effect around the minimum, the magnitude of the total conductivity being thus 
reduced dramatically. 

It should be noted that the particle-hole vertex correction has positive values in the 
low-energy region, where the spectral functions have sharp peaks and therefore the weak 
scattering picture holds. This behaviour of the corrections manifests the importance of 
the transition-rate renormalization discussed by Itoh and Watabe (1984b). Without 
renormalization the angular dependence of the scattering probability is determined 
solely by the structure factor because, in the present model, the individual scatterer 
causes only isotropic s-scattering. Then the slope of the structure factor is the only 
responsible factor for the sign of the vertex corrections. In the present case the slope is 
positive and, accordingly, the negative sign of the correction should be obtained. The 
only possible answer to this puzzle is that in the weak scattering domain the scattering is 
not really weak in the sense of the NFE approximation, but the ‘quasi-particle states’ are 
formed due to renormalization. The transition rates between these renormalized states 
are expected to have very different angular dependence. This corresponds to the con- 
tributions from the large k values beyond the quasi-particle peak, discussed by Itoh and 
Watabe (1984b). Namely, the quasi-particle state is not a simple free electron state but 
a superposition of many plane waves of the wide range of wave numbers surrounding 
the peak. Clearly this cannot be treated by the Ziman type of approach in which only the 
structural information below 2kF is incorporated. The comparison to the Ziman formula 
is made in figure 8 in terms of resistivity. It is seen that near the minimum of the DOS the 
Ziman approach is no more accurate and the difference between the two theories is never 
small even for the weakest potential of Voa2 = 0.9. 

3.3. Temperature coefficient of resistivity ( T C R )  

So far we have only been concerned about the conductivity of degenerate electrons for 
a fixed configuration. Although such calculations can include the temperature effect 
by using the observed structure factor at a given temperature, one needs to be careful 
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Figure 8. Resistivity as a function of energy 
(a):V,,a' = 0.9; (b): Vl,a2 = 1.9; (c): Vl,a2 = 2.4.  
The full curves are for the higher packing fraction 
( r j  = 0.47), the broken curves for the lower one 
( r j  = 0.42).The twopairsofcurvesshowtheresult 
for Ziman lowest order perturbation theory (Zi) 
and for the full EMA calculation. 

in dealing with this problem in the following points. There are at least three major 
factors which are responsible for the temperature dependence of resistivity of liquid or 
amorphous metals, even though we limit ourselves to the elastic scattering conduction. 
The first is that, as in the Ziman formula, the temperature effect comes in directly 
through the structure factor. In our theory this occurs in two ways; firstly the structure 
factor affects both the one-electronic self energy and the transport processes and sec- 
ondly the position of the Fermi level for a given carrier Iitimbei is temperature depen- 
dent; the Fermi level is determined only after we have calculated the DOS using the 
structure at a given temperature. Finally, we must bear in mind that the electrons are 
not really degenerate at finite temperature and one must carry out the energy integration 
of (1.1 la )  without replacing (- df/d E )  by a delta function. The latter point is usually 
neglected for metals. However, its importance has been emphasized recently by Zhao 
and Ching (1989), and we shall investigate this point first. We have plotted in figure 9 
the resistivity values for Vo a2 = 1.9 and 17 = 0.47 against the temperature T ,  for Fermi 
energies lying near the minimum of a(E) ,  by integrating expression (1.1 la) .  Our plot 
shows that the effect of 'smearing out' through the derivative of the Fermi-Dirac function 
gives a negative TCR which has the right order of magnitude for typical strong scattering 
metals, namely (Z/p)(ap/aT) = lo4 K-' (see Howson and Gallagher 1988). 

This contribution to TCR should be negative whenever we have a deep minimum of 
a(E) around the Fermi level, a situation emphasized by Zhao and Ching (1989). By 
applying the Sommerfeld expansion to evaluate the integral (1. 1la)  the quadraticdepen- 
dence on Tis obtained. However our minimum is so deep that this approximation is not 
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Figure9. Resistivity, as afunction of temperature, 
for V,,a2 = 1.9 and q = 0.47, as obtained from 
expression (1.1 la). 

accurate enough. Since the minimum is created by the Bragg reflections, it is very 
tempting to conclude that the negative TCR can be caused by the strong Fermi surface- 
Brillouin zone interaction. This tendency is along the direction of the Mooij correlation 
and it would certainly explain some cases. 

As to the first point we can attempt to find a qualitative argument by comparing the 
resistivity between different packing fractions for a fixed potential strength. Figure 8 
shows such plots for 7 = 0.42 and 0.47 (the effect of af/dE is not included in these plots). 
It is seen from the figure that the resistivity can be higher for the higher packing fractions 
in some energy regions. For the weak potential, V0a2 = 0.9, we have a negative TCR 
when the resistivity p(E)  exceeds 50 pQ cm. The cross-over from positive to negative 
TCR occurs at a higher p value (2200 pQ cm) for Voa2 = 2.4, the strongest scattering 
case considered, the cross-over occurs again at about the same p value on the low energy 
side of the resistivity peak. It shows, however, the opposite tendency on the high energy 
side. In this case the main effect of changing 7 seems to be the shift of the deep minimum 
in D ( E ) ,  see figure 2, which produces a similar shift in the resistivity versus energy 
curve. By estimating the difference of 0.05 in the packing fraction 7 to correspond 
approximately to 500 K in temperature the magnitude of the negative TCR, obtained in 
our calculations again seems to be of the typical order of magnitude observed experi- 
mentally in highly resistive disorder metals. 

We have not investigated the second point. However, a shift of the Fermi-level 
with temperature in the vicinity of the minimum may yield a significant effect on the 
temperature dependence of resistivity. This is anticipated in connection with the last 
point because the width of the deep minimum of a(E)  for the strong scattering case is of 
the order of the room temperature. Therefore highly self-consistent calculations are 
required for both the DOS and the conductivity function to study the temperature effect 
quantitatively. At present our EMA transport theory is the only analytic theory with this 
self-consistency (Itoh et a1 1984a). The investigation is not difficult in EMA because the 
expression for the integrated DOS is available (Niizeki 1979, Huisman er a1 1981). 

4. Summary and discussion 

We have presented a first coherent theoretical description of the density of states and 
the resistivity of a model disordered metal using muffin-tin EMA formalism. It is shown 
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to be the most proper extension of the KKR-CPA formalism (see, for a review, Ehrenreich 
and Schwartz 1976), which has been highly successful for the substitutionally disordered 
alloys, to the structurally disordered metals (see, e.g. Yonezawa eta1 1975). We would 
like to call for particular attention to this point; although the basic formalism was 
completed some years ago (Roth and Singh 1982) the above point does not seem to be 
well known. This is partly because of its mathematical complexity. Also the original 
formalism appears to be intractable due to the off-shell contributions. The off-shell 
corrections have been included in the complete form in I and 11, and evaluated in the 
present paper. The main obstacle in the Roth-Singh formalism has thus been overcome, 

Our calculation elucidated the strong effect of Bragg reflection in the vicinity of k = 
k,/2 and the importance of the interplay between the multiple scattering processes and 
the higher order atomic correlation. In particular it has shown that the above mechanism, 
which produces the minimum of DOS, also causes the high resistivity. Furthermore it has 
been pointed out that the Mooij correlation comes partly from the same physical origin. 
Although we need to include higher angular momentum phase shifts for quantitative 
arguments, we think that the story is basically true for all s-p metals. In particular, it is 
emphasized that the essential physics of the transport processes near the DOS minimum 
lies in the short range order rather than the disorder, and so the quantum interference 
effect is not relevant. It seems to be paradoxical that the ‘order’ can increase the 
resistivity. This is however reasonable when one recalls that the Bragg reflection creates 
the band gap in the crystalline state; the effective mass of an electron becomes infinite 
and no conduction is allowed there. Generally speaking, the structure effect is considered 
to be more important than the localization effect in liquid or amorphousmetals. It should 
be recalled that the success of the Ziman formula is totally dependent on the introduction 
of the structure factor; the structure effect is important even in the weak scattering case. 
If the individual scatterer has a large scattering amplitude, a slight change in the atomic 
structure must make a substantial change in the total scattering amplitude. The effect is 
therefore expected to be more pronounced in strong scattering materials and no definite 
conclusion can be derived without studying this effect. Some of the analysis made in the 
last section may hold even in the systems including the transition elements as major 
components. The Fermi level is expected to lie in the d-band in these systems, since the 
d-state can accommodate as many as ten electrons per atom, and the majority of the 
high resistivity metals are classified into this category. The conductivity function a(E)  is 
then expected to have a deep minimum around the Fermi level, because the strong 
scattering due to resonance and hybridization is expected only in the narrow d-band. 
The negative TCR is therefore expected for those high resistivity metals through the 
smearing of the Fermi-Dirac distribution. In any case, our calculation shows that the 
temperature dependence of resistivity can possibly be explained without taking account 
of the electron-phonon interaction explicitly. This is in agreement with the conclusion 
obtained by Zhao and Ching from their simulation study. The thermoelectric power is 
obtained from the logarithmic derivative of a(E) .  This quantity is therefore very sensitive 
to the position of the Fermi level relative to the minimum position. 

It is notable that the spectral functions have a sharp peak away from the minimum 
of the DOS, although the quantitative deviations of the resistivity values from the Ziman 
formula are still observed there. As stressed in section 3.2 the sharp peak of the spectral 
function indicates that the quasi-particle picture holds, and it implies that the Hall 
constant is free electron-like there (Itoh 1985). This is in complete agreement with the 
experimental results on the Hall constant of s-p metals (Haussler and Baumann 1983, 
Mizutani 1983). The deviation of the Hall constant from the NFE value, which is observed 
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only in the vicinity of e/a -- 1.8 is considered to be due to the strong damping and the 
double peak structure around k = k,/2. It is impossible to interpret this deviation in 
terms of the dispersion effect only. 

Finally, we make a few remarks on the points which have often caused mis- 
understandings in the literature. The problem is the definitions of the 'strong scattering 
metals' and the 'mean free path'. The latter is often estimated from the observed 
resistivity value using the Ziman formula with the free electron mass. The material is 
said to be strong scattering when the mean free path evaluated in this way becomes 
comparable to the interatomic distance. It is in fact self-contradicting to use the Ziman 
formula in such an extreme case. We emphasize that the magnitude of the resistivity is 
generally not directly related to the mean free path. For example, we can construct 
a perfect crystal by using very strong one-electron potentials. Introducing a slight 
deformation to this system would realize both the high resistivity (i.e. the short mean 
free path in the above sense) and the long relaxation time, with the enormous effective 
mass of an electron. The Boltzmann approach is still valid for a weak disorder, and the 
proper mean free path should be identified with the coherence length of the wave 
function at the Fermi energy. The tight binding model is a possible description for such 
a case and it is shown that a sufficiently long wave-coherence can result (Itoh and Watabe 
1984a, Krey et a1 1984). The above situation is markedly different from the NFE system, 
although the Hall constant is given by the free electron value. It must be noted that the 
free electron value of the Hall constant does not necessarily mean that the system is free- 
electron-like, but that the coherence length is long. The above physical picture should 
be important for the understanding of the systems with d- or  f-electrons. Of course the 
damping effect will be equally important, and the Green function formalism incorporates 
both aspects, being capable of dealing with the 'strong scattering metals' in an unam- 
biguous way. 

As we have often emphasized, the EMA is a highly self-consistent formalism that 
includes the multiple scattering processes and the atomic short range order. Apart from 
the approximations included in the theory, it is a first principle calculation, requiring no 
adjustable parameters. It is also capable of dealing with various electronic properties on 
equ.! fcstixgs. Systexatic stiidies are planned for future work. 
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Appendix 

The equations (1.1)-( 1.3) are written in terms of the singular quantities B,, Bk and G,. 
For numerical calculations we rewrite them in a divergence free form. For this purpose 
we introduce the regular part of G,: 

R , ( K )  = C , ( K )  - B , ( K ) .  ('41) 
Then, noting that 

we obtain 
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wheref(k) is a non-singular function defined by 

f(E) = B k ( ~ ) Q k ( ~ ,  K )  = n(Q; 'Bi '  - nRkBi' - n) - ' .  (A51 
The singular integration in the second term of (A4) can be further transformed as 

1 k*f(k) - K * ~ ( K )  1 K * ~ ( K )  
dk- j x s B k f ( k ) =  0 2n2 -sj 0 d k  k2 - K* 2n2 jo k2 - K *  

-- 

and the integrand of the first term in the above expression is no more singular. Its 
evaluation at k = K ,  however, requires the derivative off(k). This can be treated by the 
numerical differentiation or by setting up another equation for the differential quantity, 
which is to be solved simultaneously. 

The divergence is removed because the free propagator always appears as a com- 
bination of (A5). For the conductivity calculation, it appears either with Q k ( ~ ,  K )  or 
with ( t (k ,  k') - t(k, K ) ~ ( K ,  k')/t); in any case, t, the divergence, is suppressed. 
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